Mechanisms for Fracture and Fatigue-Crack Propagation in a Bulk Metallic Glass

نویسندگان

  • C. J. GILBERT
  • V. SCHROEDER
  • R. O. RITCHIE
چکیده

The fracture and fatigue properties of a newly developed bulk metallic glass alloy, Zr41.2Ti13.8Cu12.5 Ni10Be22.5 (at. pct), have been examined. Experimental measurements using conventional fatigue precracked compact-tension C(T) specimens (,7-mm thick) indicated that the fully amorphous alloy has a plane-strain fracture toughness comparable to polycrystalline aluminum alloys. However, significant variability was observed and possible sources are identified. The fracture surfaces exhibited a vein morphology typical of metallic glasses, and, in some cases, evidence for local melting was observed. Attempts were made to rationalize the fracture toughness in terms of a previously developed micromechanical model based on the Taylor instability, as well as on the observation of extensive crack branching and deflection. Upon partial or complete crystallization, however, the alloy was severely embrittled, with toughnesses dropping to ,1 MPa!m. Commensurate with this drop in toughness was a marginal increase in hardness and a reduction in ductility (as measured via depthsensing indentation experiments). Under cyclic loading, crack-propagation behavior in the amorphous structure was similar to that observed in polycrystalline steel and aluminum alloys. Moreover, the crack-advance mechanism was associated with alternating blunting and resharpening of the crack tip. This was evidenced by striations on fatigue fracture surfaces. Conversely, the (unnotched) stress/life (S/N) properties were markedly different. Crack initiation and subsequent growth occurred quite readily, due to the lack of microstructural barriers that would normally provide local crack-arrest points. This resulted in a low fatigue limit of ,4 pct of ultimate tensile strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass

The recent development of metallic alloy systems which can be processed with an amorphous structure over large dimensions, specifically to form metallic glasses at low cooling rates ~;10 K/s!, has permitted novel measurements of important mechanical properties. These include, for example, fatigue-crack growth and fracture toughness behavior, representing the conditions governing the subcritical...

متن کامل

Fatigue and corrosion fatigue properties of Ti-6Al-4V implant grade titanium alloy in Ringer solution

Nowadays modification of metallic biomaterials which are used as implants for bone and hard tissues replacement is considered as an important subject. In the current study, corrosion fatigue properties of Ti-6Al-4V alloy investigated via Rotating-Bending standard test method and then, the results compared with the fatigue properties of the specimens tested in the same conditions. Scanning elect...

متن کامل

Reduced Fracture Toughness of Metallic Glass at Cryogenic Temperature

The effects of cryogenic temperature on the toughness of a Zr-based metallic glass are investigated. Based on three-dimensional fracture morphologies at different temperatures, the crack formation and propagation are analyzed. Through the calculation of the shear transformation zone volume, the shear modulus and bulk modulus of the metallic glass at different temperatures and the crack formatio...

متن کامل

Stress-corrosion fatigue–crack growth in a Zr-based bulk amorphous metal

Electrochemical and mechanical experiments were conducted to analyze the environmentally influenced cracking behavior of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5. This study was motivated by a scientific interest in mechanisms of fatigue–crack propagation in an amorphous metal, and by a practical interest in the use of this amorphous metal in applications that take advantage of its ...

متن کامل

Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.

Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999